June 28, 2025
/ , , / Soal dan Pembahasan Kesebangunan Dan Kekongruenan Matematika SMP

Soal dan Pembahasan Kesebangunan Dan Kekongruenan Matematika SMP

Soal dan Pembahasan Kesebangunan Dan Kekongruenan Matematika SMP

Calon guru belajar matematika dasar SMP lewat soal dan pembahasan kesebangunan dan kekongruenan pada matematika SMP. Apa yang diharapkan setelah mempelajari materi ini, yaitu dapat menyelesaikan masalah yang berkaitan dengan kesebangunan dan kekongruenan antar bangun datar.

Soal matematika dasar kesebangunan dan kekongruenan untuk SMP kita pilih dari soal-soal yang sudah pernah diujikan pada soal Ujian Sekolah matematika SMP, soal Ujian Nasional matematika SMP, atau soal ujian seleksi akademik masuk SMA Unggulan atau SMA Plus.


KESEBANGUNAN


Dua buah bangun dikatakan sebangun (kecuali lingkaran) apabila:

  1. Besar sudut yang seletak atau bersesuaian sama besar.
  2. Perbandingan panang sisi yang seletak atau bersesuaian adalah sebanding.

Sebangun disimbolkan dengan $\sim$, misalkan $\bigtriangleup ABC$ sebangun dengan $\bigtriangleup PQR$ dapat dituliskan dengan $\bigtriangleup ABC \sim \bigtriangleup PQR$.

Dua buah segitiga yang sebangun
Karena $\angle A=\angle P$ dan $\angle B=\angle Q$ maka $\bigtriangleup ABC$ sebangun dengan $\bigtriangleup PQR$ dan dapat dituliskan $\bigtriangleup ABC \sim \bigtriangleup PQR$.

Akibat dari kesebangunan maka diperoleh perbandingan sisi-sisi yang bersesuaian sama besar. Jika kita gunakan segitiga di atas sebagai pedoman, maka kita peroleh;
\begin{align} \dfrac{AB}{PQ}=\dfrac{BC}{QR}=\dfrac{AC}{PR} \end{align}

KEKONGRUENAN


Dua buah bangun dikatakan kongruen apabila:

  1. Besar sudut yang seletak atau bersesuaian sama besar.
  2. Panjang sisi yang seletak atau bersesuaian ukurannya sama.

Dengan kata lain dua bangun dikatakan kongruen jika ukuran dan bentuknya sama. Kongruen disimbolkan dengan $\cong$, misalkan $\bigtriangleup ABC$ kongruen dengan $\bigtriangleup PQR$ dapat dituliskan dengan $\bigtriangleup ABC \cong \bigtriangleup PQR$.

Dua buah segitiga yang kongruen

CIRI-CIRI DUA SEGITIGA KONGRUEN


Dua buah segitiga dapat dikatakan kongruen jika dipenuhi salah satu dari ciri berikut ini:

  • Panjang sisi-sisi kedua segitiga adalah sama. Dapat diingat dengan ciri "sisi-sisi-sisi".
    Dua buah segitiga yang kongruen:Panjang sisi-sisi kedua segitiga adalah sama. Dapat diingat dengan ciri sisi-sisi-sisi
  • Dua sisi segitiga yang bersesuaian mempunyai ukuran yang sama dan membentuk sudut yang sama besar. Dapat diingat dengan ciri "sisi-sudut-sisi".
    Dua sisi segitiga yang bersesuaian mempunyai ukuran yang sama dan membentuk sudut yang sama besar. Dapat diingat dengan ciri sisi-sudut-sisi
  • Dua sudut segitiga yang bersesuaian sama besar dan sisi yang letaknya diantara kedua sudut sama ukurannya sama. Dapat diingat dengan ciri "sudut-sisi-sudut".
    Dua sudut segitiga yang bersesuaian sama besar dan sisi yang letaknya diantara kedua sudut sama ukurannya sama. Dapat diingat dengan ciri sudut-sisi-sudut

SOAL LATIHAN dan PEMBAHASAN MATEMATIKA SMP


1. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Pada gambar berikut, segitiga $PQR$ dan segitiga $STU$ merupakan sua segitiga kongruen. Besar $\angle R=\angle U$ dan $\angle Q=\angle S$. Manakah pasangan sisi yang sama panjang?
Soal dan Pembahasan UNBK Matematika SMP (*Simulasi UNBK Matematika SMP)
Besar sudut $BAC$ adalah...

$\begin{align}
(A)\ & PR=SU \\
(B)\ & QR=TU \\
(C)\ & PQ=SU \\
(D)\ & PQ=ST
\end{align}$
Alternatif Pembahasan:

Jika kita gambrakan dengan menambahkan informasi yang ada pada soal, maka gambar segitiga akan tampak seperti berikut ini:

Soal dan Pembahasan UNBK Matematika SMP (*Simulasi UNBK Matematika SMP)
Dari gambar di atas, beberapa hal yang dapat kita simpulkan;
  • $\angle R=\angle U$, $\angle Q=\angle S$, $\angle P=\angle T$
  • $PR=TU$, $PQ=TS$, dan $QR=US$

$\therefore$ Pilihan yang sesuai adalah $(D)\ PQ=ST$


2. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Sebuah pohon yang berada di depan gedung mempunyai tinggi $8\ m$. Pada saat yang sama bayangan gedung berimpit dengan bayangan pohon seperti tampak pada gambar di bawah.
Soal dan Pembahasan UNBK Matematika SMP(*Simulasi UNBK Matematika SMP)
Tinggi gedung yang sesuai ukuran tersebut adalah....

$\begin{align}
(A)\ & 5,30\ m \\
(B)\ & 6,25\ m \\
(C)\ & 10,00\ m \\
(D)\ & 12,00\ m
\end{align}$
Alternatif Pembahasan:

Jika kita misalkan titik-titik penting pada gambar kita beri nama seperti berikut ini;

Soal dan Pembahasan UNBK Matematika SMP(*Simulasi UNBK Matematika SMP)
Dari gambar di atas kita peroleh bahwa $\bigtriangleup ABC$ sebangun dengan $\bigtriangleup ADE$, sehingga berlaku:
$\begin{align}
\dfrac{AB}{AD} &= \dfrac{BC}{DE} \\
\dfrac{10}{15} &= \dfrac{8}{DE} \\
DE &= \dfrac{8 \times 15}{10} \\
DE &= 12
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 12,00\ m$


3. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Perhatikan Tabel
Klub Menang Seri Kalah
Man United $28$ $7$ $3$
Arsenal $22$ $7$ $9$
Leeds United $21$ $6$ $11$
Liverpool $19$ $10$ $9$
Chelsea $18$ $11$ $9$

Untuk setiap hasil pertandingan diberi nilai seperti berikut ini:

Hasil Nilai
Menang $3$
Seri $1$
Kalah $0$

4. Soal UNBK Matematika SMP 2019 |*Soal Lengkap

Perhatikan gambar
Soal dan Pembahasan UNBK Matematika SMP(*Simulasi UNBK Matematika SMP)
Seseorang akan mengukur lebar sungai dengan cara menancapkan tongkat $A,B,C, \text{dan}\ D$ seperti pada gambar. Tongkat $A$ segaris dengan pohon $E$ diseberang sungai. Jika $AB=12\ m$, $BD=15\ m$ dan $CD=25\ m$, lebar sungai adalah...

$\begin{align}
(A)\ & 15\ m \\
(B)\ & 20\ m \\
(C)\ & 31\ m \\
(D)\ & 35\ m
\end{align}$
Alternatif Pembahasan:

Dari gambar di atas, $\bigtriangleup ABE$ sebangun dengan $\bigtriangleup BCD$ karena $\angle BAE=\angle BDC$ dan $\angle ABE=\angle CBD$, sehingga berlaku:
$\begin{align}
\dfrac{AB}{BD} &= \dfrac{AE}{CD} \\
\dfrac{12}{15} &= \dfrac{AE}{25} \\
\dfrac{4}{5} \times 25 &= AE \\
20 &= AE
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ 20\ m $


5. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Pada gambar berikut, segitiga $KLM$ kkongruen dengan segitiga $RST$.
Pernyataan yang sama panjang adalah...
Soal dan Pembahasan UNBK Matematika SMP (*Simulasi Ujian Sekolah Matematika SMP)
$\begin{align}
(A)\ & KL+ST \\
(B)\ & LM=RS \\
(C)\ & KM=RT \\
(D)\ & KL=RT
\end{align}$
Alternatif Pembahasan:

Segitiga $KLM$ dan $RST$ kongruen, maka:

  • $\angle K=\angle R=75^{\circ}$
  • $\angle L=\angle S=35^{\circ}$
  • $\angle M=\angle T=70^{\circ}$
  • $KM=RT$
  • $ML=TS$
  • $KL=RS$
$\therefore$ Pilihan yang sesuai adalah $(C)\ KM=RT$


6. Soal Simulasi UNBK Matematika SMP 2019 |*Soal Lengkap

Perhatikan gambar berikut!
Soal dan Pembahasan UNBK Matematika SMP (*Simulasi Ujian Sekolah Matematika SMP)
Jika $AB = BC = CD$. maka panjang $BF$ adalah...
$\begin{align}
(A)\ & 4\ cm \\
(B)\ & 4,5\ cm \\
(C)\ & 5\ cm \\
(D)\ & 5,5\ cm
\end{align}$
Alternatif Pembahasan:

Pada gambar ada simbol arah tanda panah, garis yang ada arah tanda panah artinya adalah garis yang sejajar.
Garis $AB$ sejajar dengan garis $CD$ dan garis $CB$ sejajar dengan garis $ED$.

Untuk mendapatkan panjang garis $BF$, kita coba gunakan garis bantu, ilustrasinya kurang lebih seperti berikut ini;

Soal dan Pembahasan UNBK Matematika SMP (*Simulasi Ujian Sekolah Matematika SMP)
Dari gambar diatas kita perhatikan $\bigtriangleup\ ABF$ dan $\bigtriangleup\ AGE$ adalah segitiga yang sebangun, maka berlaku;
$\begin{align}
\frac{BF}{GE} & = \frac{AB}{AG} \\
\frac{BF}{10} & = \frac{7}{14} \\
BF & = \frac{1}{2} \times 10 \\
BF & = 5
\end{align}$

$\therefore$ Panjang $BF$ adalah $(C)\ 5\ cm$


7. Soal UNBK Matematika SMP 2018 |*Soal Lengkap

Perhatikan persamaan berikut!
$5(2x – 3) + 4 = 2(3x + 1) – (-3)$ mempunyai penyelesaian $n$. Nilai dari $3n + 5$ adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 7 \\
(C)\ & 13 \\
(D)\ & 17
\end{align}$
Alternatif Pembahasan:

$\begin{align}
5(2x – 3) + 4 & = 2(3x + 1) – (-3) \\
10x – 15 + 4 & = 6x + 2 +3 \\
10x – 11 & = 6x + 5 \\
4x & = 16 \\
x & = \frac{16}{4}=4 \\
n & = 4 \\
3n + 5 & = 3(4)+1\\
& = 12+1=13
\end{align}$

$\therefore$ Nilai dari $2n + 1$ adalah $(C)\ 13$


8. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

Perhatikan gambar berikut!
UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
Sebidang tanah berbentuk trapesium samakaki. Di bagian dalam akan dibuat kolam ikan yang sebangun dengan tanah tersebut. Di sekeliling kolam dibangun jalan setapak. Luas jalan tersebut adalah...

$\begin{align}
(A)\ & 216\ m^{2} \\ (B)\ & 226\ m^{2} \\ (C)\ & 236\ m^{2} \\ (D)\ & 316\ m^{2}
\end{align}$
Alternatif Pembahasan:

Untuk menghitung luas jalan, kita coba menghitung dari selisih luas tanah dan luas kolam. Tanah dan kolam sama-sama berbentuk trapesium sama kaki, hanya ukurannya yang berbeda.

UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
Unsur-unsur pada gambar diatas yang belum diketahui adalah $x$ dan $y$, yang bisa kita hitung dengan menggunakan perbandingan sisi-sisi yang bersesuaian.
$\frac{x}{15}=\frac{36}{y}=\frac{20}{25}$
$\frac{x}{15}=\frac{36}{y}=\frac{4}{5}$
$\frac{x}{15}=\frac{4}{5}$
$x=\frac{4}{5} \times 15$
$x=12$

$\frac{36}{y}=\frac{4}{5}$
$y=\frac{5}{4} \times 36$
$y=45$

Luas trapesium adalah jumlah panjang garis sejajar dikali jarak dua garis sejajar lalu dibagi dua.
UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
Dengan memperhatikan data-data pada gambar;
$d_{k}=\sqrt{20^{2}-12^{2}}$
$d_{k}=\sqrt{400-144}=16$

$d_{t}=\sqrt{25^{2}-15^{2}}$
$d_{t}=\sqrt{625-225}=20$

Luas kolam
$L_{k}=\frac{1}{2} \times (12+36) \times 16$
$L_{k}=\frac{1}{2} \times 48 \times 16$
$L_{k}=384$

Luas tanah
$L_{k}=\frac{1}{2} \times (15+45) \times 20$
$L_{k}=\frac{1}{2} \times 60 \times 20$
$L_{k}=600$

Luas jalan=Luas tanah-luas kolam
Luas jalan$=600-384=216\ m^{2}$

$\therefore$ Pilihan yang sesuai adalah $(A)\ 216\ m^{2}$


9. Soal Simulasi UNBK Matematika SMP 2018 |*Soal Lengkap

"Lebar Sungai"
Andi ingin mengetahui lebar sungai. Di seberang sungai terdapat sebuah pohon. Untuk itu dia menancapkan tongkat pada posisi A, B, C, dan D dengan ukuran seperti gambar.
UNBK 2018 Matematika SMP (*Soal dan Pembahasan)
Andi ingin mengukur lebar sungai dari tongkat D sampai pohon. Berapa lebar sungai tersebut?

$\begin{align}
(A)\ & 11\ m \\ (B)\ & 12\ m \\ (C)\ & 15\ m \\ (D)\ & 16\ m
\end{align}$
Alternatif Pembahasan:

Untuk menghitung lebar sungai dengan informasi yang ada pada soal, kita coba gunakan perbandingan sisi yang bersesuaian pada segitiga.

Kita misalkan lebar sungai adalah $x$ dan posisi pohon adalah $P$.
Dengan demikian kita peroleh 2 segitiga yang sebangun yaitu $\bigtriangleup ABP$ dan $\bigtriangleup DCP$.
$ \begin{array}
& \frac{AB}{DC} =\frac{AP}{DP} \\ & \frac{8}{6} = \frac{4+x}{x} \\ & 8x = 6(4+x) \\ & 8x = 24+6x \\ & 8x-6x = 24 \\ & 2x = 24 \\ & x = \frac{24}{2} \\ & x = 12
\end{array} $

$\therefore$ Pilihan yang sesuai adalah $(B)\ 12\ m$


10. Soal Seleksi Akademik YASOP SMAN 2 Balige 2005 |*Soal Lengkap

Suatu pohon yang tingginya $24\ m$ mempunyai bayangan di tanah sepanjang $18\ m$. Jika pohon pinus yang tinginya $60\ m$, maka bayangannya di tanah sepanjang...
$\begin{align}
(A)\ & 40\ m \\ (B)\ & 45\ m \\ (C)\ & 75\ m \\ (D)\ & 80\ m
\end{align}$
Alternatif Pembahasan:

Dengan menggunakan konsep perbandingan senilai maka kita peroleh:
$\begin{align}
\dfrac{t_{pohon}}{t_{pinus}} & = \dfrac{bayangan_{pohon}}{bayangan_{pinus}} \\ \dfrac{24}{60} & = \dfrac{18}{bayangan_{pinus}} \\ bayangan_{pinus} \times 24 & = 18 \times 60 \\ bayangan_{pinus} & = \dfrac{18 \times 60}{24} \\ bayangan_{pinus} & = 45
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 45\ m$


11. Soal Seleksi Akademik YASOP SMAN 2 Balige 2005 |*Soal Lengkap

Segitiga $ABC$ seperti pada gambar di bawah ini:

Matematika SMP, Seleksi Akademik Masuk Asrama YASOP SMAN 2 Balige 2005
$DE$ sejajar $AB$
$AB=5$, $DE=3$, $CE=x$ dan $EB=y$.
Perbandingan $x:y=\cdots$
$\begin{align}
(A)\ & 5:4 \\ (B)\ & 3:4 \\ (C)\ & 2:3 \\ (D)\ & 3:2
\end{align}$

Alternatif Pembahasan:
Show

Dari gambar kita peroleh informasi bahwa $\bigtriangleup CDE$ sebangun dengan $\bigtriangleup CAB$ sehingga berlaku:
$\begin{align}
\dfrac{DE}{AB} & = \dfrac{CE}{CB} \\ \dfrac{3}{5} & = \dfrac{x}{x+y} \\ 3(x+y) & = 5x \\ 3x+3y & = 5x \\ 3y & = 5x-3x \\ 3y & = 2x \\ \dfrac{x}{y} & = \dfrac{3}{2}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(D)\ 3:2$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras


Table

Tabel pada tema ini sudah disetting responsive, sebagai contoh jika jumlah kolom atau lebar tabel melebihi lebar layar maka agar tidak merusak layoutnya secara otomatis table akan memiliki fungsi scroll.

Silahkan buka artikel ini pada perangkat seluler anda dan sorot bagian tabel dibawah:

No Column_1 Column_2 Column_3 Column_4 Column_5
1 Data_table_1 00.000.000 0.000.000 0.000.000 0.000.000
2 Data_table_2 00.000.000 0.000.000 0.000.000 0.000.000
3 Data_table_3 00.000.000 0.000.000 0.000.000 0.000.000
4 Data_table_4 00.000.000 0.000.000 0.000.000 0.000.000

Untuk segala sesuatu hal yang perlu kita diskusikan terkait Soal dan Pembahasan Kesebangunan Dan Kekongruenan Matematika SMP silahkan disampaikan 🙏 CMIIW😊.

Jangan Lupa Untuk Berbagi 🙏 Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

about author

Blogger Sens it website about blogger templates and blogger widgets you can find us on social media
Next Post:Go to tne Next Post